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The improved surface gradient method for �ows simulation
in variable bed topography channel using

TVD-MacCormack scheme

Ming-Hseng Tseng∗;†

Information Management; Chung Shan Medical University; Taichung 402; Taiwan; R.O.C.

SUMMARY

This paper reports four di�erent approaches to discretize the source terms for the simulation of one-
dimensional open-channel �ows with rapidly varied bottom topography using TVD-MacCormack
scheme. Compared with other high-resolution shock-capturing schemes, MacCormack-type predictor–
corrector method is easy to implement and does not present any additional di�culty in dealing with the
source terms. To avoid the generation of arti�cial numerical waves, if the bottom topography shows
strong variation, special treatment of the source terms is still required to eliminate or reduce the arti�cial
numerical error caused by adding TVD corrections to the method. The computed results demonstrated
that the improved surface gradient method is more suitable for simulating open-channel �ow with highly
irregular bed topography by using the surface gradient instead of the depth gradient for TVD corrections
and considering the balancing of the source terms and the �ux gradients. Copyright ? 2003 John Wiley
& Sons, Ltd.

KEY WORDS: variable bed topography; open-channel �ow; TVD-MacCormack scheme; improved
surface gradient method

1. INTRODUCTION

The prediction of shallow water �ows with abrupt changes, such as hydraulic jumps, bores
and surges are of great interest to hydraulic engineers. The variations of water depths and
velocities in these extreme events are important parameters for the design of hydraulic systems
and for �ood control operations. However, due to the strong gradients inherent in the problems,
most of the traditional simulation models display spurious oscillations at the shock fronts.
In the past 15 years much e�ort has been made in the numerical solution of hyperbolic

systems of conservation laws, starting with the �eld of gas dynamics [1, 2]. With the advances
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made in the computational techniques, the high-resolution shock-capturing schemes have been
successfully applied for solving the homogeneous form of the shallow water equations by
many researchers [3–10]. However, these numerical models restrain the oscillatory behaviour
in the solution at the expense of increased algorithm complexity. Besides, in real scenario,
it is necessary to consider the e�ect of source terms such as the bed slope and friction
slope. Compared with other high-resolution shock-capturing schemes, TVD-MacCormack-type
predictor–corrector-updating method is easy to implement and does not bring in any additional
di�culty in dealing with the source terms [7–10].
As we know, most of the �ow routing models have some numerical di�culties, if the

irregular bottom topography is present, especially, very poor results are usually obtained if
most of the high-resolution shock-capturing schemes are applied without special treatment
to simulate the open-channel �ow with strong bed slope variations. Recently, Berm�udez and
V�azquez [11] and V�azquez-Cend�on [12] proposed an upwind method to solve shallow water
�ow with source terms. LeVeque [13] developed a treatment for source terms balancing
with �ux gradients for a quasi-steady problem. Hubbard and Garcia-Navarro [14] suggested
a method for balancing source terms and �ux gradients based on the upwind approach of
Berm�udez and V�azquez. However, these upwind methods are complex. Zhou et al. [15]
proposed the surface gradient method for shallow water equations with source terms such
as bed slope, and the bed slope term is discretized with a centred scheme. To eliminate or
reduce the arti�cial numerical error caused by strong channel bed slope variations for TVD-
MacCormack scheme, three improved approaches on the simulation of free surface �ows in
channel with high irregular bed topography are developed and compared in this paper.

2. MATHEMATICAL FORMULATION

Based on the assumption of hydrostatic pressure distribution and incompressible �ows, the St
Venant equations for one-dimensional, unsteady open-channel �ows can be described as

@Q
@t
+

@F
@x
=S (1)

in which

Q=

(
A
Q

)
; F=

(
Q

Q2A−1 + gI1

)
; S=

(
0

gA(So − Sf )

)

where t represents the time, x is the longitudinal distance along a channel, A is the wetted
cross-sectional area, Q is the volume �ow rate, g is the gravitational acceleration, I1 is the
hydrostatic pressure force, So is the bed slope, and Sf is the friction slope. In this study, �ows
through a prismatic open-channel of bed slope and friction slope are modelled to illustrate
the use of di�erent treatments for these source terms.
Equation (1) can be expressed in quasi-linear form as

@Q
@t
+A

@Q
@x
=S (2)
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where A is the Jacobian matrix having two real eigenvalues

�1 = u+ c; �2 = u− c (3)

where u=Q=A is the �ow velocity, c=
√

gA=T is the wave celerity, and T is the wetted top
width of the cross-section. In this study, the corresponding right and left eigenvector matrices
for matrix A are de�ned as

R=

[
1 1
�1 �2

]
; L=

1
2c

[
−�2 1
�1 −1

]
(4)

For the hyperbolicity, the Jacobian matrix A can be found

A=R�L; �=

[
�1 0
0 �2

]
(5)

3. NUMERICAL MODEL

3.1. Original TVD-MacCormack model

In view of the numerous advantages of MacCormack-type predictor–corrector scheme [16],
it is still widely used in computational hydraulics. Firstly, the scheme is a shock-capturing
technique with second-order accuracy both in time and space. Secondly, the inclusion of the
source terms is relatively simple. And, thirdly, it is suitable for implementation in explicit
time-marching algorithm. The computational domain is discretized as xj= j�x and t n= n�t,
where �x is the size of a uniform mesh, and �t is the time increment. The predictor–corrector
three-step procedure is expressed as [7, 9, 10]

Predictor step: Qp
j =Q

n
j −

�t
�x
(Fn

j+1 − Fn
j ) +�t Sn

j (6)

Corrector step: Qc
j =Q

n
j −

�t
�x
(Fpj − Fpj−1) + �t Spj (7)

Updating step: Qn+1
j =

1
2
(Qp

j +Q
c
j) +

1
2
�t
�x

(
Rj+1=2�j+1=2 −Rj−1=2�j−1=2

)
(8)

where the superscript p and c denote the variables at predictor and corrector steps, respectively.
The predictor step in Equation (6) is a forward di�erence in space; the corrector step in
Equation (7) is a backward di�erence in space. Owing to the fact that MacCormack scheme
incorporates forward and backward di�erences in separated predictor and corrector steps, four
di�erent combinations can be found for one-dimensional problems [9]. In this study, the
forward–backward di�erences are rotated during the computation to avoid the accumulation
of errors.
Equation (8) furnishes the scheme with total variation diminishing (TVD) dissipation, which

is capable of rendering the solution oscillation free, while retaining second-order accuracy in
space and time almost everywhere (except at extreme points) [1, 2]. This is an important
feature that is capable of dealing with transcritical and rapidly varied �ows such as hydraulic
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jumps and surges. To achieve this purpose, the component of �j+1=2 in Equation (8) is
de�ned as

�k
j+1=2 =  (�k

j+1=2)
(
1− �t

�x
|�k

j+1=2|
)
(1− ’(rk

j+1=2))�
k
j+1=2 (9)

The entropy �x function  is

 (z)=

{
|z| if |z|¿�
� if |z|¡�

(10)

where � is a small positive number whose value has to be determined for each individual
problem. Harten and Hyman [17] suggested a formula to calculate � in order to cut down
trial process

� k
j+1=2 = max[0; �k

j+1=2 − �k
j ; �k

j+1 − �k
j+1=2] (11)

The characteristic variable � is

�j+1=2 =
1

2cj+1=2

[
−�2 1
�1 −1

]
j+1=2

·
[
Aj+1 − Aj

Qj+1 −Qj

]
(12)

The subscript ( j + 1
2) denotes the intermediate state between grid points j and ( j + 1).

Following the technique suggested by Roe [3], the mean values of velocity and wave
celerity can be calculated as

uj+1=2 =

√
Ajuj +

√
Aj+1uj+1√

Aj +
√

Aj+1
; cj+1=2 =

√
gAj+1=2

Tj+1=2
(13)

The purpose of the �ux limiter function ’ in Equation (9) is to supply arti�cial dissipation
when there is a discontinuity or a strong gradient, while adding very little or no dissipation
in regions of smooth variation. There are several forms of the function ’ suggested in Refe-
rences [1–3]. In this study, a minmod limiter of function ’ was used

’(rk
j+1=2)=

{
min(|rk

j+1=2|; 1); r k
j+1=2¿0

0; r k
j+1=260

(14)

where

rk
j+1=2 =

�k
j+1=2−s

�k
j+1=2

; s=sign(�k
j+1=2) (15)

The source terms appearing on the right-hand side of Equations (6) and (7) are evaluated
as follows:

(So)j=
zj−1 − zj+1
2�x

; (Sf )j=
n2Qj|Qj|
A2jR

4=3
j

(16)

where z is the elevation of the bed, R is the hydraulic radius and n is the Manning coe�cient.
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For the stability of explicit scheme, the Courant–Friedrich–Lewy condition must be satis�ed

�t=Cr
[
�x

|u|+ c

]
(17)

where Cr is the Courant number. In this study, the value of Cr can be set to 1.0, usually
0.95. The convergence criterion for a steady solution is de�ned as the sum of the relative
error of water depth at every grid between two time levels less than 5× 10−6.
The �nite-di�erence TVD-MacCormack scheme developed in this study is devised for inte-

rior points. Boundary conditions are implemented by giving phantom grids outside the compu-
tational domain where dependent variables and gradients are speci�ed. For subcritical �ows,
velocity is needed at the in�ow boundary, and water depth has to be speci�ed at the out�ow
boundary. For supercritical �ows, only the in�ow boundary conditions such as the water depth
and velocity are needed, and none at the out�ow boundary. The remaining unknown variables
are provided by giving a zero gradient condition at the boundaries.

3.2. Model test

In this section, the original TVD-MacCormack model outlined above is tested by solving
two benchmark problems including steady smooth and transcritical �ows in a channel with
irregular bed topography.

3.2.1. Steady smooth �ow in irregular bed topography channels. To demonstrate the orig-
inal model to solve the steady smooth �ow in channels with strong variations of bottom
topography, a steady �ow over an irregular bed was proposed at a workshop on dam break
wave simulations [18]. This case gives a good insight into the behaviour of numerical error;
because of the steady-state �ow conditions the discharge should be constant at any grid over
the computational domain. The length of the channel is 1500m long, the Manning coe�cient
is 0.1, and the irregular bed topography of the channel is shown in Figure 1(a). The same bed
is also used by V’azquuez-Cend’in [12], Hubbard and Garcia-Navarro [14] and Zhou et al.
[15]. At the upstream end, a constant discharge of 0:75m2=s is imposed, while the downstream
water depth is �xed at the value of 15 m. In the computation, 201 grids with �x=7:5 m,
which is the same as that by V�azquez-Cend�on [12] and Zhou et al. [15].
Results given in Figure 1(a)–1(c) exhibit the variations of simulated water surface elevation,

�ow velocity and discharge along the channel for the original TVD-MacCormack model. It
shows that the water surface elevation along the channel has some numerical errors, and the
pro�les of �ow velocity and discharge have more unphysical oscillations. For a quantitative
comparison with the mass conservation characteristic of the numerical scheme, the relative
errors are de�ned by the Qerr and Herr indexes

Qerr =
(
Qj −Qu

Qu

)
∗ 100%; Herr =

(
Hj −Hu

Hu

)
∗ 100% (18)

where (Qj;Hj) and (Qu ; Hu) are the discharge and water surface elevation at any grid j and at
the upstream end. The results simulated by the original TVD-MacCormack model show that
the value of Qerr is between −119 and 103%, and the value of Herr is between −0:6 and
0.8% for this irregular bottom topography case. To obtain accurate solutions without excessive
grid re�nement, the result indicates that it is necessary to develop a special treatment of

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:71–91



76 M.-H. TSENG

0 250 500 750 1000 1250 1500
Distance (m)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
is

ch
ar

ge
(m

2 /s
)

Simulated
Exact

Discharge

0 250 500 750 1000 1250 1500
Distance (m)

-0.1

0

0.1

0.2

0.3

V
el

o
ci

ty
(m

/s
)

Simulated
Exact

Velocity

0 250 500 750 1000 1250 1500
Distance (m)

0

4

8

12

16

E
le

va
tio

n
(m

)

Simulated
Exact

∆

≡

Water Surface Elevation

(c)

(b)

(a)

Figure 1. Steady smooth �ow with irregular bed topography (original model): (a) Water surface
elevation; (b) Velocity and (c) Discharge.

source terms to avoid the generation of arti�cial numerical error due to irregular bed elevation
variations even in the smooth �ow regime.

3.2.2. Steady transcritical �ow in irregular bed topography channel. Another very interest-
ing case presented in this section is the steady transcritical �ow in strongly varying bottom
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Figure 2. Steady transcritical �ow with irregular bed topography (original model): (a) Water surface
elevation; (b) Froude number and (c) Discharge.

topography, which to the writers’ knowledge, has not been reported before. This con�guration
is commonly encountered in engineering practice in some natural mountain rivers. The length
of the channel is 1600m long, the Manning coe�cient is 0.033, and the bottom topography of
the channel is shown in Figure 2(a). At the upstream end, a constant discharge of 0:59 m2=s
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is imposed, while the downstream water depth is �xed at the value of 0:42m. A uniform grid
size �x=8 m is used in the simulation.
Figure 2(a)–2(c) displays the variations of simulated water surface elevation, Froude num-

ber and discharge along the channel. It shows that the original TVD-MacCormack model can
simulate this transcritical �ow without any numerical di�culty. But it also illustrates that the
mass conservation characteristic is poor due to the value of Qerr is between −16 and 24% for
this irregular bottom topography case. The result shows once more that a special treatment
of source terms is needed to reduce the arti�cial numerical error because of irregular bed
topography which is likely in nature.

4. IMPROVEMENT OF MASS CONSERVATION

From the results of a large number of tests, it is evident that some special numerical treatment
is needed to insure mass conservation in the numerical solution of free surface �ows in
channels with irregular bed topography. For this purpose, three improved approaches have
been studied. They are presented below.

4.1. Approach 1

Based on the �nding of LeVeque [13] and Hubbard and Garcia-Navarro [14], the balancing
of source terms and �ux gradients is an important way to reduce the arti�cial numerical
oscillations due to strong irregular bed elevation variations. In this formulation, the terms of
bed slope and friction slope are discretized at each step with forward or backward di�erences
in the same manner as the �ux gradient term (@F=@x) as follows:

Predictor step: (gASo)j= gAj+1=2
(zj − zj+1)
�x

; (gASf )j= g
n2Qj+1=2|Qj+1=2|
Aj+1=2R

4=3
j+1=2

(19)

Corrector step: (gASo)j= gAj−1=2
(zj−1 − zj)
�x

; (gASf )j= g
n2Qj−1=2|Qj−1=2|
Aj−1=2R

4=3
j−1=2

(20)

where Aj±1=2 and Qj±1=2 are the arithmetic mean of the wetted cross-sectional area and the
discharge between grid points j and ( j ± 1).
Figure 3(a)–3(c) illustrates the simulated water surface elevation, Froude number and dis-

charge for the benchmark problem of smooth �ow at Section 3.2.1, respectively, and the
value of Qerr is between −125 and 101%, also the value of Herr is between −0:5 and 0.7%.
The corresponding water surface elevation, Froude number and discharge for the benchmark
problem of transcritical �ow at Section 3.2.2 is shown in Figure 4(a)–4(c), respectively,
and the value of Qerr is between −13 and 22%. These results obtained from this approach
have clearly demonstrated that the mass conservation cannot be improved by comparing with
Figures 1 and 3, and Figures 2 and 4. The outcome may be due to adding the TVD correction
in �ux gradient is incompatible with the source terms in this approach.
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Figure 3. Steady smooth �ow with irregular bed topography (improved approach 1): (a) Water surface
elevation; (b) Velocity and (c) Discharge.

4.2. Approach 2

In general, the water surface pro�le or elevation H along the channel �ow is normally much
smoother than the bed elevation z or water depth h. The idea of surface gradient method [15]
is used in this approach, where the water surface elevation is chosen to calculate the TVD
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Figure 4. Steady transcritical �ow with irregular bed topography (improved approach 1): (a) Water
surface elevation; (b) Froude number and (c) Discharge.

correction. For the locally rectangular channel, Equation (12) can be rewritten as

�j+1=2 =
1

2cj+1=2

[
−�2 1
�1 −1

]
j+1=2

·
[

hj+1 − hj

(hu)j+1 − (hu)j

]
(21)
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The only di�erence between the original TVD-MacCormack model and this improved ap-
proach is that the characteristic variable �j+1=2 in Equation (21) is replaced by

�j+1=2 =
1

2cj+1=2

[
−�2 1
�1 −1

]
j+1=2

·
[

Hj+1 −Hj

(hu)j+1 − (hu)j

]
(22)

This treatment is the same as the original TVD-MacCormack model in the absence of bed
slope term.
Figure 5(a)–5(c) demonstrates the simulated water surface elevation, Froude number and

discharge obtained by this approach for the benchmark problem of smooth �ow, respec-
tively, and the value of Qerr is between −9 and 11%, also the value of Herr is between
−0:2 and 0.0%. The corresponding water surface elevation, Froude number and discharge
for the benchmark problem of transcritical �ow are shown in Figure 6(a)–6(c), respectively,
and the value of Qerr is between −3 and 4%. By comparing with Figures 1 and 5, and
Figures 2 and 6, it is seen that the numerical error of discharge is reduced by more than
an order of magnitude for both smooth and transcritical �ow test cases. However, it also
indicates that the improved approach outlined above has to be further improved to elim-
inate or further reduce the arti�cial numerical error caused by strong channel bed slope
variations.

4.3. Approach 3

According to the nature of TVD-MacCormack-type predictor–corrector-updating procedure,
a hybrid approach is proposed by discretizing the source terms at each step in the same
manner as the �ux gradient incorporated using the water surface elevation instead of wa-
ter depth for the TVD correction. This improved approach employs Equations (19) and
(20) to discretize the source terms in Equations (6) and (7), and uses Equation (22) in-
stead of Equation (12). This treatment just combined the improved strategy of approaches
1 and 2.
Results given in Figure 7(a)–7(c) exhibit the variations of simulated water surface elevation,

Froude number and discharge along the channel for the benchmark test of smooth �ow by
the improved approach 3, respectively, the values of Qerr and Herr are eliminated exactly to
−0:0 and 0.0%. The results obtained from this approach have evidently demonstrated that the
mass conservation of the smooth open-channel �ow can be preserved very well in every grid
even in �ows with high irregular bed topography. The corresponding water surface elevation,
Froude number and discharge for the benchmark problem of transcritical �ow are shown in
Figure 8(a)–8(c), respectively, and the value of Qerr is between −2 and 3%. It is also seen
that the mass conservation can be satis�ed well by using this improved approach even in the
transcritical �ows with strong bed slope variations.
By comparing the results of Figures 1–8, the improved approach 3 is the most accurate,

the improved approach 2 ranks second and the original TVD-MacCormack formulation is
the least accurate. Besides, all of the three improved approaches involve an equivalent level
implementation complexity and computation e�ort to the original TVD-MacCormack model.
It can be seen that the improved approach 3 is more suitable for simulating open-channel
�ow with highly irregular bed topography by using the surface gradient instead of the depth
gradient and considering the balancing of the source terms and the �ux gradients. In the
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Figure 5. Steady smooth �ow with irregular bed topography (improved approach 2): (a) Water surface
elevation; (b) Velocity and (c) Discharge.

following, the proposed approach is veri�ed by solving more benchmark problems including
both steady and unsteady �ows with source terms e�ect. The accuracy is shown by comparing
the numerical solutions with analytical solutions, available numerical results and experimental
data.
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Figure 6. Steady transcritical �ow with irregular bed topography (improved approach 2): (a) Water
surface elevation; (b) Froude number and (c) Discharge.

4.4. Steady smooth �ow over hump

This test problem is a steady frictionless �ow with a bell-shaped hump at channel bottom. An
analytical solution can be found for this case. This example is a simpli�ed case that represents
channel �ows of irregular bottom topography. The bell-shaped hump starts at x=125 m and
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Figure 7. Steady smooth �ow with irregular bed topography (improved approach 3): (a) Water surface
elevation; (b) Velocity and (c) Discharge.

ends at x=875 m, and the bed elevation z of the channel shown in Figure 9(a) can be
described as

z(x)=4:75 sin2
(
x − 125
750

�
)

(23)
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Figure 8. Steady transcritical �ow with irregular bed topography (improved approach 3): (a) Water
surface elevation; (b) Froude number and (c) Discharge.

At the upstream end, a discharge of 20:0 m2=s is imposed and no boundary condition was
needed at the downstream end of the channel. These conditions lead to a hydraulic drop
near the hump. An analytical solution can be derived from the conservation of mass and
energy. A uniform grid distribution with 101 grids is used in the computation. Figure 9(a)
and 9(b) compares the simulation results of water surface elevation and Froude number with
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Figure 9. Steady smooth �ow over hump: (a) Water surface elevation;
(b) Froude number and (c) Discharge.

the analytical solutions, respectively. As can be seen, the agreement between the analytical
solution and the numerical solution is remarkable. Figure 9(c) shows a variation of discharge
along the channel, and an excellent mass conservation characteristic of the proposed approach
is preserved even for the channel �ows with the bell-shaped bottom topography.
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4.5. Steady transcritical �ow over hump

In this case, a discharge of 20:0 m2=s is imposed at the upstream end, while the down-
stream water depth is �xed to the value of 7.0 m. These conditions lead to a hydraulic jump
near the hump. An analytical solution can be derived from the conservation of mass and
energy combined with the speci�c-force relation. The simulation results of water surface el-
evation, Froude number and discharge compared with the analytical solutions are shown in
Figure 10(a)–10(c), respectively. The numerical solutions are obtained by using 101 uniform
grids. The agreement between the analytical solution and the numerical solution is very well.
The results compare favourably with those of previous papers [7, 15, 19]. This comparison
indicates that the proposed approach can handle the transcritical �ows automatically, and the
hydraulic jump is accurately captured without any oscillation.

4.6. Steady transcritical �ow in rough sloping channel
The �ow con�guration in this test represents transcritical �ows in a rectangular channel con-
sisting of 4 reaches with di�erent bed slopes (So1 = 0:03; Lo1 = 40m; So2 = 0:008; Lo2 = 40m;
So3 = 0:03; Lo3 = 40 m; So4 = 0:011; Lo4 = 40 m). The total length of the channel is 160 m.
The discharge is set to be 2:36 m2=s at the upstream and the water depth is set equal to
0:84 m at downstream boundary, the Manning’s coe�cient is 0.033, and the grid size is 1 m.
The water surface and Froude number simulated by the proposed approach are represented in
Figure 11. The locations of the hydraulic jumps and hydraulic drop can be accurately described
by the proposed approach without any oscillation. The result compares favourably with that
of Tseng et al. [19]. Figure 11(c) shows the variation of discharge along the channel, and an
excellent mass conservation characteristic of the proposed approach is preserved even for the
transcritical �ows in the rough sloping channel.

4.7. Dam break �ow in rough sloping channel
The above cases only test the proposed approach to simulate open-channel �ow in steady state.
In order to demonstrate that the proposed scheme is capable of describing unsteady �ow, a
laboratory dam-break experiment of Waterway Experiment Station (WES), U.S. Corps of
Engineers [20] is also simulated in this study. The experiment was conducted in a rectangular
channel with length of 122 m, width of 1:22 m, bottom slope of 0.005, and the Manning
coe�cient n=0:045. The water depth upstream of the dam is 0:305 m, and the downstream
water depth is zero. The �ow domain is discretized into 123 grids with a uniform grid spacing
�x=1:0 m. Figure 12(a) and 12(b) shows a comparison of the computed and measured
water surface pro�les at four di�erent locations. Figure 12(a) compares the simulated water
surface pro�les with the experimental data at 39.62 and 6:10 m upstream of the dam, while
Figure 12(b) exhibits the water surface pro�les at 7.62 and 45:72 m downstream of the dam.
The proposed approach predicts well the arrival time for positive and negative waves and
water surface elevation both upstream and downstream of the dam for sloping channel with
high hydraulic resistance.

5. CONCLUDING REMARKS

Four di�erent treatments to discretize the source terms, including the original TVD-
MacCormack formulation and three improved approaches, are presented in this paper for
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Figure 10. Steady transcritical �ow over hump: (a) Water surface elevation;
(b) Froude number and (c) Discharge.

the computation of one-dimensional open-channel �ows with rapidly varied bed topography
by using the �nite-di�erence TVD-MacCormack scheme.
In the original TVD-MacCormack formulation, a centred di�erence is employed to discretize

the bed slope term and a pointwise method is applied for the friction slope term. Based on
solving two benchmark problems including steady smooth and transcritical �ows, the simulated
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Figure 11. Steady transcritical �ow in rough sloping channel: (a) Water surface elevation;
(b) Froude number and (c) Discharge.

results obtained by the original TVD-MacCormack model show that a special treatment of
source terms is needed to reduce the arti�cial numerical error caused by strong channel bed
slope variations.
In the improved approach 1, the terms of bed slope and friction slope are discretized at

each step with forward or backward di�erences in the same manner as the �ux gradient term
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Figure 12. Dam break �ow in rough sloping channel: (a) U.S. of Dam and (b) D.S. of Dam.

to achieve balancing between �ux gradients and source terms. In the improved approach 2,
the water surface elevation instead of water depth is chosen to calculate the TVD correction,
i.e. the surface gradient method (SGM). In the improved approach 3, a hybrid treatment is
proposed by combining approaches 1 and 2 together, which is referred to as the improved
SGM. By comparing the results obtained by the three improved approaches and the original
TVD-MacCormack model, the improved SGM is the most accurate, the SGM ranks second
and the original TVD-MacCormack formulation is the least accurate. Besides, all of the three
improved approaches involve an equivalent level implementation complexity and computation
e�ort to the original TVD-MacCormack model. It can be seen that the improved SGM is more
suitable for simulating open-channel �ow with highly irregular bed topography by using the
surface gradient instead of the depth gradient for TVD corrections, considering the balancing
of the source terms and the �ux gradients.
Finally, veri�cations of the proposed improved approach are made by comparison with

analytical solutions or available experimental data for both steady and unsteady problems
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involving the source terms e�ect, and very good agreements are found. Furthermore, results of
the proposed improved SGM approach exhibit high accuracy, robustness, stability, simplicity
and e�ciency for simulation of channel �ows with strong bed elevation variations.
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